The joy of working as a Customer Success Solution Architect is that I have the opportunity to work with many different customers and each challenges us with a different Big Data use case.
I've worked with enterprises that offload their Netezza database into the cloud. I've seen companies analyze social media data in real-time. I've helped teams streamline operational processes and increase efficiency in production lines. Big Data provides enterprises a competitive advantage and reduces operational costs across a these varied scenarios. However, setting up a big data environment is not for the faint-hearted - or is it?
Read More
Topics:
BI,
Analytics,
Data,
BI on Big Data,
Data Lake,
best practices
2018 Dataworks Summit is just around the corner. As you’re preparing your travel to San Jose, it’s time to think about how to maximize your time at the Dataworks Summit. Dataworks Summit will take place from June 18 to June 21. Sessions, keynotes, and workshop are spread across eight different tracks. Check out the full agenda. Everyone may have different goals for this summit. While you’re going through the agenda to select the best sessions for you and your organization, here are our recommendations.
Read More
Topics:
Big Data,
Hadoop Summit,
hortonworks,
Analytics,
Data,
BI on Big Data,
Data Lake
Organizations have come to the realization that data is a core part of their strategy and a scalable distributed computing platform central to their technology investment. However, a challenge that big data practitioners face is what use case they should first implement in their journey towards realizing their big data strategy. The reality is, multiple items need to be addressed: choosing the right technology, requisite funding, and the right technical talent. However, identifying the right use case with defined success outcome is the most crucial point of starting a big data project.
Read More
Topics:
Cloud,
Data,
BI on Big Data,
Data Lake
How valuable is an insight if you don’t know what’s driving it?
The investment in big data made in recent years by companies has been significant. Many are now looking to capitalize on the insights to be discovered in their expansive data lakes. Developing an analytic solution is a difficult and laborious process. More than a few projects have been abandoned long before any conclusive benefit is realized. Some efforts end due to constraints on time and money, others as a result of bad design or poor end user adoption. That last point is significant. You’re going to spend considerable resources to empower your decision makers. If you build it, and they don’t come, then what?
Read More
Topics:
Business Intelligence,
Big Data,
Semantic Layer,
Analytics,
BI on Big Data,
Data Lake,
data driven