The growing popularity of big data analytics coupled with the adoption of technologies like Spark and Hadoop have allowed enterprises to collect an ever increasing amount of data - in terms of breadth and volume. At the same time, the need for traditional business analysis of these data sets using widely adopted tools like Microsoft Excel, Tableau, and Qlik still remains. Historically data is provided to these visualization front ends using OLAP interfaces and data structures. OLAP makes the data easy for business users to consume, and offers interactive performance for the types of queries that the business intelligence (BI) tools generate.
However, as data volumes explode, reaching hundreds of terabytes or even petabytes of data, traditional OLAP servers have a hard time scaling. To surmount this modern data challenge, many leading enterprises are now in search of the next generation of business intelligence capabilities, falling into the category of scale-out BI. In this blog I'll share how you can leverage the familiar interface and performance of an OLAP server while scaling out to the largest of data sets.
And if you don't have time to read the whole thing, don't miss the 10-minute 'cliff-note' video of scale-out BI on Hadoop near the end.